Tag Archives: NSIDC

The United States’ National Snow and Ice Data Center

The 2019 Maximum Arctic Sea Ice Extent

March 2019 has arrived, which in recent years has proved to be by far the likeliest month to contain the maximum extent of Arctic sea ice for the year. To begin with, here’s our favourite high resolution extent graph calculated by “Wipneus” from University of Hamburg/JAXA AMSR2 data:

Hopefully you can plainly see the pronounced sharp peak towards the end of February 2019? The current maximum Arctic sea ice extent for 2019 is 13.83 million square kilometers on February 22nd. Here’s Arctic sea ice area for good measure:

The current maximum area for 2019 is 13.10 million square kilometers, also on February 22nd. Here too is the NSIDC’s 5 day averaged extent:

charctic-20170221

This reveals a current maximum extent for 2019 of 14.705 million square kilometers on February 24th.

At this juncture you may well be wondering what the cause of that sudden sharp peak might be? Here’s your starter for ten:

Whilst overall Arctic sea ice area is unremarkable for the current decade, sea ice area in the Bering Sea is remarkable low for the time of year! What’s more much like last year the Chukchi Sea is not currently full to overflowing with sea ice, and is also lowest for the date in the AMSR2 satellite records:

I’ve also been experimenting with the new gridded CryoSat-2/SMOS thickness data from the Finnish Meteorological Institute, which reveals this:

That’s a weekly overview dated February 24th, but it does perhaps explain how such a large area of sea ice could melt so swiftly?

As luck would have it the skies are reasonably clear over the Bering Strait this morning (UTC). Here’s Terra’s view from on high of the current situation:

Terra's view of the Bering Strait on March 1st 2019
Terra’s view of the Bering Strait on March 1st 2019

 
[Edit – March 1st PM]

The “low resolution” version of JAXA extent has fallen once again today:

Do you suppose that the current maximum of 14.19 million square kilometers on February 22nd will hold until All Fools’ Day and beyond?

 
[Edit – March 2nd]

An animation of recent movements of sea ice in the Bering and Chukchi Seas:


 

Note the recent spread of open water across the southern Chukchi Sea.

 
[Edit – March 3rd]

Another angle on the Chukchi Sea, plus significant areas of open water now becoming evident in the Beaufort Sea:

 

[Edit – March 5th]

Some alternative views on Arctic sea ice thickness:

PIOMAS via Wipneus:

Blended CryoSat-2/SMOS:

plus close ups of the Bering/Chukchi area:

and the Atlantic periphery:

Please note the change of scale.

 

[Edit – March 6th]

Arctic sea ice extent is currently rebounding:

although not in all the peripheral seas:

 

[Edit – March 7th]

High resolution AMSR2 area and extent both declined today:

Long distance swells are already reaching the Bering Sea, with much more to come:

 

[Edit – March 9th]

Wipneus’ trusty Raspberry Pi hasn’t crunched the high res AMSR2 numbers yet, so let’s take a look at some other extent metrics.

Here’s JAXA’s “low res” AMSR2 numbers:

Here too is the NSIDC’s 5 day average:

By special request from Michael Ohere for the first time is the DMI’s take on Arctic sea ice extent:

In addition, here is the underlying sea ice concentration data from the OSI-SAF:

Since Michael is also asserting that there currently exists “the greatest February Arctic sea ice extent (according to DMI) in your blog’s history”, here’s Arctic sea ice area excluding the extremely peripheral Okhotsk and St. Lawrence regions:

P.S. Wipneus’ Pi has processed the AMSR2 data now, and area shows another, more modest, decline today:

In addition, here is the underlying sea ice concentration data from the University of Hamburg:

 

[Edit – March 10th]

Both area and extent increased today:

including increases on both the Atlantic:

and Pacific sides of the Arctic:

 

[Edit – March 11th]

Both area and extent are still moving inexorably upwards:

The late February maximum still holds, on the high resolution numbers at least. The JAXA/VISHOP web site is down at the moment, so we’ll have to wait for an update to that particular metric, as well as a post weekend update to the NSIDC’s Charctic chart.

P.S. Jaxa is still down this afternoon, but here’s the latest from the NSIDC:

 

[Edit – March 13th]

Arctic wide area and extent have blasted past their respective late February maxima:

However Arctic sea ice area excluding the Okhotsk and St. Lawrence peripheral regions has still not exceeded the maximum formed on January 25th:

 

[Edit – March 14th]

This morning’s data reveal the first decline in extent for several days:

The (extremely!) tentative new maximum Arctic sea ice extent for 2019 is 13.89 million square kilometers on March 12th.

 

[Edit – March 15th]

JAXA is back!

UH AMSR2 confirms that extent is still declining:

 

[Edit – March 16th]

Arctic sea ice extent continues to decline, whilst area is still flatlining:

Meanwhile a look at freezing degree days based on the DMI’s dubiously weighted data for north of 80 degrees reveals the story of the freezing season. A historically warm start, but now back in amongst the pack of the 2010s:

 

[Edit – March 17th]

It looks as though there’ll be no going back from this. Arctic sea ice area is finally following extent’s decline in no uncertain terms:

Barring exceedingly unforeseen circumstances after this year’s “double top” that leaves the 2019 Arctic sea ice maximum extent numbers as follows:

UH/Wipneus AMSR2 – 13.89 million square kilometers on March 12th
JAXA/VISHOP AMSR2 – 14.27 million square kilometers on March 12th
NSIDC 5 day SSMIS – 14.78 million square kilometers on March 13th

 

[Edit – March 19th]

Arctic sea ice area has fallen off the proverbial cliff over the last few days. There can now be no doubt that the 2019 maximum extent has been reached:

That being the case, all other Arctic sea ice discussion for the month of March can now take place over at:

Facts About the Arctic in March 2019

 

[Edit – March 21st]

The NSIDC have provisionally confirmed this year’s maximum extent:

On March 13, 2019, Arctic sea ice likely reached its maximum extent for the year, at 14.78 million square kilometers (5.71 million square miles), the seventh lowest in the 40-year satellite record, tying with 2007. This year’s maximum extent is 860,000 square kilometers (332,000 square miles) below the 1981 to 2010 average maximum of 15.64 million square kilometers (6.04 million square miles) and 370,000 square kilometers (143,000 square miles) above the lowest maximum of 14.41 million square kilometers (5.56 million square miles) set on March 7, 2017. Prior to 2019, the four lowest maximum extents occurred from 2015 to 2018.

The date of the maximum this year, March 13, was very close to the 1981 to 2010 median date of March 12.

Please note this is a preliminary announcement of the sea ice maximum. At the beginning of April, NSIDC scientists will release a full analysis of winter conditions in the Arctic, along with monthly data for March.

Facts About the Arctic in January 2019

We generally write our periodic reports on the state of Arctic sea ice around the time the PIOMAS volume numbers are published. It seems as though we’ll have a long wait for that to happen at the moment though. According to The Economist today:

America’s government shutdown has become the longest in history. Hundreds of thousands of federal workers remain either stuck at home or forced to work without pay. To reopen the government President Donald Trump is demanding $5.7bn for his border wall. Nancy Pelosi, who presides over the most polarised House of Representatives in recent memory, does not want to give it to him.

and according to the Polar Science Center at the University of Washington:

Due to the US Government Shutdown, PIOMAS ice volume and thickness data which depend on federal government generated reanalysis products, are currently not updated.

Instead of PIOMAS, let’s start instead with the January 2019 edition of the National Snow and Ice Data Center’s Arctic Sea Ice News:

As 2018 came to a close, Arctic sea ice extent was tracking at its third lowest level in the satellite record, while sea ice in the Antarctic remained at historic lows. Slightly faster growth in the first few days of the new year, mostly in the Pacific sea ice areas, has the daily sea ice extent at fifth lowest as of this post.

Now let’s take a look at our favourite high resolution AMSR2 area and extent metrics:

You can see that towards the end of December Arctic sea ice extent was verging on lowest for the date, since when it has risen quickly to reach highest for the date in the brief AMSR2 records a few days ago.

The NSIDC also mention the US Government shutdown:

Unfortunately, as a result of the partial government shutdown, we are unable to access the National Oceanic and Atmospheric Administration (NOAA) pages to retrieve information on atmospheric air temperatures and sea level pressure patterns. Instead, we turn to daily (2 meters above the surface) mean air temperatures north of 80 degrees North from the European Centre for Medium-Range Weather Forecasts (ECMWF) operational model. This analysis shows that air temperatures remained above the 1958 to 2002 average for all of December.

Graph by Zack Labe
Graph by Zack Labe

That brings us on to our Arctic freezing degree days graph, based on DMI data:

After a very slow start to the freezing season the FDD numbers are now vying for second place with last year, behind the astonishingly warm winter of 2016/17. In the absence of the PIOMAS volume numbers we can at least take a look at sea ice thickness. Here’s CryoSat-2:

followed by SMOS:

and since a change is as good as a rest here’s the latest map from the Russian Arctic and Antarctic Research Institute for good measure:

All those sources seem to be agreed that large areas of both the Barents and Kara Seas are currently covered by young thin ice. Finally, for the moment at least, let’s take a look at some extracts from the NSIDC’s review of 2018:

January 2018 began the year with record low sea ice extents for the Arctic as a whole.

The seasonal maximum, reached on March 17, 2018, was the second lowest in the satellite record. While low extent persisted through April and May, sea ice loss during early summer was unremarkable despite above average 925 hPa air temperatures over the Arctic Ocean and Eurasia.

Air temperatures over the Arctic Ocean in July were below average, followed by above average temperatures in August. In fact, on average, August temperatures were higher than July temperatures in 2018. This is highly unusual in the Arctic and something not seen in at least 40 years.

The September 2018 seasonal minimum extent ended up slightly above the long-term linear trend line, tying with 2008 for the sixth lowest in the satellite record. After the minimum, the ocean was slow to freeze up, and October sea ice extent ended up as the third lowest. However, ice growth was very rapid in November, such that November 2018 extent approached the interquartile range of the 1981 to 2010 median. Nevertheless, large amounts of open water remained in the Barents and Chukchi Seas. By the end of December, ice conditions in the Chukchi Sea were back to average, while extent remained unusually low in the Barents Sea.

Coverage of old ice (greater than 4 years old) over the Arctic continued to decline. Such old ice covers only 5 percent of the area it used to in 1980s.

 

[Edit – January 13th]

Arctic sea ice area and extent have both been falling over the last few days, possibly as a result of the recent cyclone which created strong northerly winds in the Fram Strait. This is from Earth at 09:00 UTC on January 10th, showing a MSLP of 946 hPa:

Here’s what used to be referred to as JAXA extent:

Meanwhile up in the stratosphere at 10 hPa the polar vortex has gone into reverse:

Or to be more precise:

An Unusual Sea Ice Situation North of Greenland

Further to our recent coverage of the voyage of the good ship Polarstern past Kap Morris Jesup comes this video courtesy of Suman Singha:

An animation created with 2745 high resolution Sentinel-1 SAR images.

Sentinel-1 data courtesy Copernicus

Plus the early autumn estimates of Arctic sea ice thickness from CryoSat-2 via the Centre for Polar Observation and Monitoring:

CS2_thk_14-20181010

Please note the abnormally thin sea ice to the north of Greenland.

Finally, for the moment at least, here’s the latest Arctic sea ice age information extracted from the October 2018 edition of the NSIDC’s Arctic Sea Ice News:

iceage_browse_week_n_2018_38_QL

TschudiAge2018-1000

The “oldest, thickest sea ice in the Arctic” seems to be vanishing before our very eyes.

The 2018 Arctic Sea Ice Metric Minima

September is upon us once again, the month in which the assorted Arctic sea ice area and extent metrics (almost) always reach their respective annual minima. Now we are free to start speculating about what the assorted minima will be, and on what date.

To begin with let’s take a look at our much beloved high resolution AMSR2 metrics derived by “Wipneus” from the University of Hamburg’s AMSR2 concentration data:

Arctic-Area-2018-09-01

Arctic-Extent-2018-09-01

There’s currently some divergence between the area and extent graphs. Area is declining rapidly for the time of year, whilst extent seems to almost have come to a standstill!

Next here’s the prediction of the late, great Andrew Slater’s Probabilistic Ice Extent algorithm:

SPIE-extent-20180901

Before looking at some of the other metrics we’ll wait for the effect of the assorted storms currently circling the Arctic to play out. Here’s how the AMSR2 concentration map looks at the moment:

Arc_20180901_res3.125

whilst here’s the University of Bremen’s summer SMOS sea ice “thinness” map:

SMOS-20180901

 

[Edit – September 3rd]

UH AMSR2 area and extent both increased yesterday, so we have a (very!) provisional minimum extent of 4.35 million square kilometres on September 1st.

 

[Edit – September 4th]

Area and extent have both increased again:

Arctic-Area-2018-09-03

Arctic-Extent-2018-09-03

Is the minimum already in, or will the storms still circulating around the Arctic Ocean reverse that trend over the next few days?

 

[Edit – September 6th]

High resolution area and extent both posted marginal new lows for the year yesterday:

Arctic-Area-2018-09-05

Arctic-Extent-2018-09-05

 

[Edit – September 29th]

According to the latest edition of the NSIDC’s Arctic Sea Ice News:

On September 19 and 23, Arctic sea ice appeared to have reached its seasonal minimum extent for the year, at 4.59 million square kilometers (1.77 million square miles). This ties 2018 with 2008 and 2010 for the sixth lowest minimum extent in the nearly 40-year satellite record.

Please note that this is a preliminary announcement. Changing winds or late-season melt could still reduce the Arctic ice extent, as happened in 2005 and 2010. NSIDC scientists will release a full analysis of the Arctic melt season, and discuss the Antarctic winter sea ice growth, in early October.

Figure2_09232018

The NSIDC numbers are based on a 5 day average, whereas the one day high resolution AMSR2 extent reached a minimum of 4.195 million square kilometers on September 17th:

Arctic-Extent-2018-09-28

The AMSR2 area minimum occurred significantly earlier. 3.737 million square kilometers on September 9th:

Arctic-Area-2018-09-28

Facts About the Arctic in April 2018

First of all Wipneus has been very quick off the mark this month with his PIOMAS gridded thickness map. Here is what it reveals for the last day of March:

PIOMAS-20180331

Here too is the latest PIOMAS volume graph:

PIOMAS-volume-20180331

together with the associated anomaly graph:

PIOMAS-anomaly-20180331

They show 2018 still in second lowest position, albeit much closer to third place than last year’s line, which is currently leading the pack by a considerable margin.

By way of comparison here are the current Arctic sea ice thickness maps from SMOS:

SMOS-thkness-20180402

and CryoSat-2:

CryoSat-20180330

All eyes are still on the Bering and Chukchi Seas, where significant extent declines look likely over the coming days.

 

[Edit – April 4th]

The official PIOMAS graph including March 2018 is now available:

BPIOMASIceVolumeAnomalyCurrentV2.1_20180331

Meanwhile, according to NIPR/JAXA, Arctic sea ice extent is once again lowest for the date since their records began:

VISHOP_Ext_20180404

 

[Edit – April 6th]

The NSIDC 5 day averaged extent is now in “lowest in our records” territory:

Charctic-20180406

Meanwhile “JAXA” extent has just edged above 2016!

 

[Edit – April 11th]

The focus has been on the Bering and Chukchi Seas until now. However there were clear skies over the Mackenzie Delta yesterday, revealing some open(ish) areas in the Beaufort Sea:

NASA Worldview “true-color” image of the Beaufort Sea on April 10th 2018, derived from the MODIS sensor on the Terra satellite
NASA Worldview “true-color” image of the Beaufort Sea on April 10th 2018, derived from the MODIS sensor on the Terra satellite

There’s only the merest hint of a blip on the area graph so far though:

UH-Beaufort-Area-2018-04-10

It will be interesting to see if the decline in Beaufort Sea area continues from here, or whether this year’s “flatline” resumes and continues for a while longer.

 

[Edit – April 19th]

It’s not so apparent on the other extent metrics, but as the periphery melts the high resolution AMSR2 version looks to be heading into virgin territory on the downside:

UH-Arctic-Extent-2018-04-18

The 2018 Maximum Arctic Sea Ice Extent

According to the latest edition of the National Snow and Ice Data Center’s “Arctic Sea Ice News”

On March 17, 2018, Arctic sea ice likely reached its maximum extent for the year, at 14.48 million square kilometers (5.59 million square miles), the second lowest in the 39-year satellite record, falling just behind 2017. This year’s maximum extent is 1.16 million square kilometers (448,000 square miles) below the 1981 to 2010 average maximum of 15.64 million square kilometers (6.04 million square miles).

The four lowest seasonal maxima have all occurred during the last four years. The 2018 maximum is 60,000 square kilometers (23,200 square miles) above the record low maximum that occurred on March 7, 2017.

Here’s a close up view of recent maxima via the NSIDC’s Charctic interactive sea ice graph:

Charctic-20180323

Next let’s take a look at extent data from the Japanese National Institute of Polar Research, colloquially referred to as “JAXA extent”

VISHOP_Extent-20180323

In this case the maximum was 13.89 million square kilometers, also on March 17th.

Here too are the extent and area graphs based on Wipneus’ processing of the University of Hamburg’s AMSR2 based concentration data:

UH-Arctic-Extent-2018-03-23

UH-Arctic-Area-2018-03-23

They highlight the surge in Arctic sea ice area in the middle of March due to the sudden “cold snap”:

meanT_2018-03-24
Looking at the third Arctic dimension, here’s the latest SMOS thickness map from the University of Bremen:

SMOS-20180323

and here’s the latest CryoSat-2 thickness map:

CS2-thk_28-2018-03-21

They reveal large areas of relatively thin sea ice in the Okhotsk and Barents Seas where the ice can now be expected to melt as quickly as it formed. There is also remarkably little sea ice in the Bering Sea for the time of year:

UH-Bering-Extent-2018-03-23

Facts About the Arctic in February 2018

Whilst the official PIOMAS volume figures for January have yet to be released Wipneus has worked his usual magic on the gridded thickness numbers to reveal:

PIOMAS-thkness-20180131

not to mention the calculated volume:

PIOMAS-volume-20180131

and the volume anomaly:

PIOMAS-anomaly-20180131

As Wipneus puts it:

Estimated from the thickness data, the latest value is from 31st of January: 17.57 [1000 km3], which is the second lowest value for that day, 2017 is lowest by a rather large margin at 16.16 [1000 km3].

Here are the “measured” thickness maps from SMOS:

SMOS-20180131

and CryoSat-2:

CS2-thk_28-2018-01-29

Here are the end of January Arctic wide high resolution AMSR2 graphs based on University of Hamburg data:

UH-Arctic-Area-2018-01-31

UH-Arctic-Extent-2018-01-31

In addition, since it’s that time of year, here too is Wipneus’ NSIDC global sea ice extent:

nsidc_global_extent_20180202

The minimum thus far is very slightly above last year’s value, but perhaps like last year there will be a “double dip”?

Getting back to the Arctic, here is the DMI >80N temperature plot for January:

DMI-meanT_20180201

together with the associated freezing degree days graph:

2018-02-01-DMI-FDD

Here’s a video showing the effect of the mid January cyclones on the sea ice in the Fram Strait and north of Svalbard:

Finally, for the moment at least, here is the current Fram Strait surf forecast for 12:00 UTC on February 5th:

Significant_height_of_combined_w in multi_1.glo_30mext.20180203_00021

Mean_period_of_wind_waves_surfac in multi_1.glo_30mext.20180203_00021

Those maps shows 10 meter high, 15 second period waves heading straight for the ice edge north of Svalbard.

 

[Edit – February 7th]

The latest edition of Arctic Sea Ice News has been published. As the NSIDC put it:

January of 2018 began and ended with satellite-era record lows in Arctic sea ice extent, resulting in a new record low for the month. Combined with low ice extent in the Antarctic, global sea ice extent is also at a record low.

monthly_ice_01_NH_v3.0

Air temperatures at the 925 hPa level (about 2,500 feet above sea level) remained unusually high over the Arctic Ocean. Nearly all of the region was at least 3 degrees Celsius (5 degrees Fahrenheit) or more above average. The largest departures from average of more than 9 degrees Celsius (16 degrees Fahrenheit) were over the Kara and Barents Seas, centered near Svalbard. On the Pacific side, air temperatures were about 5 degrees Celsius (9 degrees Fahrenheit) above average. By contrast, 925 hPa temperatures over Siberia were up to 4 degrees Celsius (7 degrees Fahrenheit) below average. The warmth over the Arctic Ocean appears to result partly from a pattern of atmospheric circulation bringing in southerly air, and partly from the release of heat into the atmosphere from open water areas.

airtemp-201801

 

[Edit – February 10th]

The University of Hamburg’s high resolution AMSR2 derived area is bouncing back after the recent cyclone, but extent is currently still declining:

UH-Arctic-Area-2018-02-09

UH-Arctic-Extent-2018-02-09

The recent drop in Arctic sea ice extent has pushed the NSIDC global extent to a new all time (satellite era!) low:

nsidc_global_extent_20180209

The 2017/18 Festive Season in the Arctic

Christmas is coming, and Santa’s secret summer swimming pool has frozen over once again. However the same can’t be said for the Chukchi Sea! More on that in due course, but first let’s take a look at the PIOMAS volume graph at the end of November, courtesy of the wondrous Wipneus on the Arctic Sea Ice Forum:

piomas-trnd4-2017-11

2017 is currently third lowest, behind 2012 and 2016. Next let’s take a look at Wipneus’ PIOMAS Arctic sea ice thickness map:

PIOMAS-thk-20171130

followed by the University of Bremen’s SMOS Arctic sea ice thickness map:

20171205_hvnorth__l1c

Note the large area of pale blue open ocean still visible in the Chukchi Sea towards the top left of both maps.

For another perspective on Arctic sea ice thickness here’s the latest Cryosat-2 map, which currently is based on the month up to November 24th:

CS2-thk_28-2017-11-24

Finally, for the moment at least, here’s our very own Arctic Freezing Degree Days graph based on the DMI’s >80N data:

DMI-FDD-2017-12-06

2017 is currently occupying the wide open space between the astonishingly low numbers last year and all previous years in DMI’s record. Here’s their graph for 2017 so far:

DMI-meanT_2017-12-06

 

[Edit – December 10th]

Current Arctic sea ice area and extent derived from the University of Hamburg’s high resolution AMSR2 data:

UH-Arctic-Area-2017-12-09

UH-Arctic-Extent-2017-12-09

Plus the latest update on the Chukchi Sea situation:

UH-Chukchi-Area-2017-12-09

 

[Edit – December 20th]

Wipneus has released his mid month PIOMAS update for December:

piomas-trnd4-2017-12-15

PIOMAS-thk-dec152017

The Chukchi Sea is now mostly covered in sea ice, as is the Kara Sea. Volume is still 3rd lowest behind 2016 and 2012.

Whilst on the subject of sea ice thickness a related subject is sea ice age. Here’s a new paper on that topic:

A new tracking algorithm for sea ice age distribution estimation

Note that these assorted sea ice age maps are all for January 1st 2016!

Figure-6-Comparison-of-SIA-for-the-1-Jan-2016-calculated-with-the-following-combinations

Watch this space!

The 2017 Arctic Sea Ice Metric Minima

September has arrived once again, the month in which the assorted Arctic area and extent metrics (almost) always reach their respective annual minima. Now we can start to speculate about what the assorted minima will be, and on what date.

First of all let’s take a look at “Snow White’s” favourite high resolution AMSR2 metrics derived by “Wipneus” from University of Hamburg AMSR2 concentration data:

UH-Arctic-Area-2017-09-02

UH-Arctic-Extent-2017-09-02

As you can see, today’s values are both higher than yesterday’s. Hence we already have potential minima to consider! In this case:

UH AMSR2 Area – 3.65 million km² on September 1st
UH AMSR2 Extent – 4.30 million km² on September 1st

Personally I don’t think those numbers will last long, and here’s one reason why. The “surf forecast” for the far North Atlantic for midday on September 6th:

Significant_height_of_combined_w in multi_1.glo_30mext.20170903_00029

Mean_period_of_swell_waves_order in multi_1.glo_30mext.20170903_00029

Some significant swells are currently forecast to batter the ice edge on the Atlantic side of the Arctic over the next few days.

 

[Edit – September 3rd PM]

Shock news! Tony Heller has made a prediction about this year’s minimum!! Unlike last year, this year the NSIDC 5 day average extent seems to be his Arctic metric of choice:

Charctic-20170902

Tony tells his faithful flock:

The Arctic sea ice minimum this year is very likely going to be be larger than 2016, 2015, 2012, 2011 and 2007.

It is also likely that the minimum extent will be higher than 2010 and 2008.

Instead of reporting the huge gain in ice and massive failure of their forecasts, climate alarmists will report that extent was “8th lowest on record.”

All those years are on the graph above. We shall see.

 

[Edit – September 15th]

Our normal Arctic sea ice extent 2017 minimum service will be restored as soon as possible. Meanwhile here is the test card:

That comes to you via the Daily Express of all places!

On the way the cruise’s resident naturalist and Smithsonian lecturer, Michael Scott, risked the wrath of Trump supporters by pointing to some of the changes Greenland is undergoing.

A Nasa map based on data between 2004 and 2014 revealed that the ice is melting across most of Greenland – an area nine times the size of the UK.

Pulling together several papers, Michael said Greenland’s summer melt season now lasts 70 days longer than in the early 1970s.

This melting is unfreezing the fringes of the permafrost, which may explain why Nasa satellites are picking up fires raging where the ice has retreated.

 

[Edit – September 16th]

It is of course still to early to be 100% certain about this. However:

UH-Arctic-Extent-2017-09-15

It certainly looks as though the bottom is in for the University of Hamburg AMSR2 extent: 4.25 million km² on September 11th.

It’s much the same story for JAXA extent:

VISHOP_Extent-20170915

4.47 million km² on September 9th and 10th.

 

[Edit – September 19th]

The NSIDC have followed in Snow White’s glass slippered footsteps and tentatively called the minimum:

On September 13, Arctic sea ice appears to have reached its seasonal minimum extent of 4.64 million square kilometers (1.79 million square miles), the eighth lowest in the 38-year satellite record. The overall rate of ice loss this summer was slowed by a persistent pattern of low sea level pressure focused over the central Arctic Ocean.

Please note that this is a preliminary announcement. Changing winds or late-season melt could still reduce the Arctic ice extent, as happened in 2005 and 2010. NSIDC scientists will release a full analysis of the Arctic melt season, and discuss the Antarctic winter sea ice growth, in early October.

The ever industrious Wipneus has also called the PIOMAS minimum volume for 2017:

Minimum volume was reached at 11th September: 4.542 103km3, which is fourth lowest after 2012, 2011 and 2016 (resp 3.673, 4.302, 4.402) and just below 2010 (4.582).

piomas_gridded_thickness_20170911

 

[Edit – September 23rd]

Here’s the 2017 edition of our annual NSIDC daily max/min extent graph:

NSIDC-NH-MaxMin-2017

The maximum extent was the lowest in the satellite record, and the minimum was just fractionally above the trend line. For those that concern themselves with “statistical significance”, the PIOMAS minimum volume was a “statistical tie” for second place:

PIOMAS-20170915

Watch this space!

Facts About the Arctic in June 2017

After a comparatively cool May, surface air temperatures in the high Arctic are back up to “normal”:

DMI-meanT_20170603

The condition of the sea ice north of 80 degrees is far from normal however. Here’s what’s been happening to the (normally) land fast ice north west of Greenland:

NASA Worldview “true-color” image of the sea ice north west of Greenland breaking up on June 2nd 2017
NASA Worldview “true-color” image of the sea ice north west of Greenland breaking up on June 2nd 2017

Further south surface melt has set in across the southern route through the Northwest Passage:

NASA Worldview “false-color” image of the Coronation Gulf on June 1st 2017, derived from the MODIS sensor on the Terra satellite
NASA Worldview “false-color” image of the Coronation Gulf on June 1st 2017, derived from the MODIS sensor on the Terra satellite

Whilst the gap with previous years has narrowed during May, PIOMAS Arctic sea ice volume is still well below all previous years in their records:

piomas-graph-201705

The PIOMAS gridded thickness graph suggests that a large area of thick ice is currently sailing through the Fram Strait to ultimate oblivion:

piomas_gridded_thickness_20170531

Here’s the latest AMSR2 Arctic sea ice area graph:

UH-Arctic-Area-2017-06-02

and just in case melt ponds are now affecting those numbers here is extent as well:

UH-Arctic-Extent-2017-06-02

The rate of decrease is inexorably increasing! 2012 extent is currently still well above that of 2017, but those positions may well be reversed by the end of June? Here’s NSIDC’s view on the matter:

Charctic-20170602

 

[Edit – June 8th]

As requested by Tommy, here’s the current Arctic Basin sea ice area:UH-Basin-Area-2017-06-07

This includes the Beaufort, Chukchi, East Siberian and Laptev Seas along with the Central Arctic. It excludes the Atlantic periphery, which currently looks like this:UH-Atlantic-Area-2017-06-07

 

[Edit – June 10th]

At long last a clear(ish) image of water from the Lena Delta spreading out across the fast ice in the Laptev Sea:

NASA Worldview “true-color” image of the Lena Delta on June 10th 2017, derived from the MODIS sensor on the Terra satellite
NASA Worldview “true-color” image of the Lena Delta on June 10th 2017, derived from the MODIS sensor on the Terra satellite

Compare and contrast with June 1st last year:

and June 10th 2012:

NASA Worldview “true-color” image of the Lena Delta on June 10th 2012, derived from the MODIS sensor on the Terra satellite
NASA Worldview “true-color” image of the Lena Delta on June 10th 2012, derived from the MODIS sensor on the Terra satellite

 

[Edit – June 11th]

DMI’s daily mean temperature for the Arctic area north of the 80th northern parallel has reached zero degrees Celsius almost exactly on the climatological schedule:

DMI-meanT_20170610

We calculate our freezing degree days on the basis of the freezing point of Arctic sea water at -1.8 degrees Celsius. On that basis this winter’s grand total of 3740 was reached on June 1st:

DMI-FDD-20170531

Despite the “coolish” recent weather total FDDs are way below the climatology and other recent years. Consequently there’s a lot less sea ice in the Arctic left to melt at the start of this Central Arctic melting season than in any previous year in the satellite record. However whilst there are some melt ponds visible in the Arctic Basin on MODIS, in that respect 2017 is lagging behind both last year and 2012.

Here’s the latest JAXA surface melt map:AM2SI20170610A_SIT_NP

 

[Edit – June 13th]

JAXA/IJIS/ADS Arctic sea ice extent for 2017 is now above 2012:

VISHOP_Extent-20170612

Meanwhile there are finally signs of some surface melt on the fast ice in the Laptev Sea:

NASA Worldview “false-color” image of the Laptev Sea on June 13th 2017, derived from the MODIS sensor on the Aqua satellite
NASA Worldview “false-color” image of the Laptev Sea on June 13th 2017, derived from the MODIS sensor on the Aqua satellite

 

[Edit – June 14th]

An animation of the latest Arctic sea ice age data from Mark Tschudi:

Further confirmation that in 2017 the older, thicker ice is gathered together on the Atlantic side of the Arctic Ocean.

 

[Edit – June 15th]

The Mackenzie River melt waters have now breached the fast ice off the delta:

NASA Worldview “true-color” image of the Mackenzie on June 14th 2017, derived from the MODIS sensor on the Terra satellite
NASA Worldview “true-color” image of the Mackenzie on June 14th 2017, derived from the MODIS sensor on the Terra satellite

 

[Edit – June 16th]

Thanks to the sterling work of Wipneus on the Arctic Sea Ice Forum, here’s a regional breakdown of PIOMAS Arctic Sea Ice volume for the month of May:

PIOMAS-Regions-2017-05

Note the caveat – “No checks, but the data looks plausible”.

 

[Edit – June 17th]

The AMSR2 data feed from the University of Hamburg suffered from a “brief hiatus” a few days ago, but is now back in action:

UH-Arctic-Area-2017-06-15

UH-Arctic-Extent-2017-06-15

Yesterday’s data still hasn’t arrived, but it certainly looks as though 2017 extent will soon drop below 2016.

 

[Edit – June 18th]

The PIOMAS mid month volume update has arrived. The gap between 2012 and 2017 is closing fast:

piomas-2017-D166

Here’s the regional breakdown:

PIOMAS-Regions-2017-D166

 

[Edit – June 23rd]

Here is the ECMWF MSLP forecast for 96 hours time:

ECMWF-20170623+96h-400

A sub 970 hPa cyclone is starting to enter the realms of realistic possibility, and also forecast are some significant waves in the Chukchi Sea and the expanding 2017 “Laptev Bite”:

Significant_height_of_combined_w in multi_1.glo_30mext.20170623_00016

 

[Edit – June 27th]

The forecast cyclone was nowhere near as deep as predicted. According to the analysis by Environment Canada it bottomed out at 980 hPa yesterday:

Synopsis-20170626-00Z-Crop

 

[Edit – June 29th]

O-Buoy 14 is currently firmly embedded in the fast ice of Viscount Melville Sound, deep in the heart of the Northwest Passage. Here’s the view from the buoy’s camera:

OBuoy14-20170629-1201

and here’s the view from space:

Melville-Terra-2017-06-29

Watch this space!